Novel Quantum-Dot Cellular Automata-Based Gate Designs for Efficient Reversible Computing

نویسندگان

چکیده

Reversible logic enables ultra-low power circuit design and quantum computation. Quantum-dot Cellular Automata (QCA) is the most promising technology considered to implement reversible circuits, mainly due correspondence between features of QCA circuits. This work aims push forward state-of-the-art QCA-based circuits implementation by proposing a novel full adder\full subtractor (FA\FS). At first, we consider an efficient XOR-gate, based on this, new layouts Feynman, Toffoli, Peres, PQR, TR, RUG, URG, RQCA, RQG are proposed. The XOR gate significantly reduces required clock phases area. As result, all proposed regarding cell count, delay, Finally, presented gates, (FA\FS) Compared FA\FS achieved up 57% area savings, with 46% 29% reduction in number respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

A New Design for Two-input XOR Gate in Quantum-dot Cellular Automata

Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension, therefore, it is a promising alternative to CMOS technology. In QCA, configuration of charges plays the role which is played by current in CMOS. This replacement provides the significant advantages. Additionally, exclusive-or (XOR) gate is a useful building block in man...

متن کامل

Exploring and Exploiting Quantum-Dot Cellular Automata

The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presente...

متن کامل

Fanout gate in quantum-dot cellular automata

We present an experimental demonstration of a fanout gate for quantum-dot cellular automata (QCA), where a signal applied to a single input cell is amplified by that cell and sent to two output cells. Each cell is a single-electron latch composed of three metal dots, which are connected in series by tunnel junctions. Binary information is represented by an excess electron localized to one of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2023

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su15032265